-
날씨 정보로 나이브에즈 분류기 작성 - 비 예보Python 데이터 분석 2022. 11. 24. 18:10
날씨 정보로 나이브에즈 분류기 작성 - 비 예보
# 날씨 정보로 나이브에즈 분류기 작성 - 비 예보 import pandas as pd from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score from sklearn import metrics df = pd.read_csv('../testdata/weather.csv') print(df.head(3)) print(df.info()) x = df[['MinTemp', 'MaxTemp', 'Rainfall']] # y = df['RainTomorrow'].apply(lambda x:1 if x == 'Yes' else 0) y = df['RainTomorrow'].map({'Yes':1, 'No':0}) print(x[:3]) print(y[:3]) print(set(y)) # {0, 1} # 7 : 3 split x_train, x_test, y_train, y_test = train_test_split(x, y, random_state = 1) print(x_train.shape, x_test.shape, y_train.shape, y_test.shape) # (274, 3) (92, 3) (274,) (92,) # model gmodel = GaussianNB() gmodel.fit(x_train, y_train) pred = gmodel.predict(x_test) print('예측값 :', pred[:10]) print('실제값 :', y_test[:10].values) acc = sum(y_test == pred) / len(pred) print('acc :', acc) print('acc :', accuracy_score(y_test, pred)) # kfold from sklearn import model_selection cross_val = model_selection.cross_val_score(gmodel, x, y, cv = 5) print('교차 검증 :', cross_val) print('교차 검증 평균값 :', cross_val.mean()) print('새로운 자료로 분류 예측') import numpy as np new_weather = np.array([[8.0, 24.3, 0.0], [10.0, 25.3, 10.0], [10.0, 30.3, 5.0]]) print(gmodel.predict(new_weather)) <console> class cap-shape cap-surface ... spore-print-color population habitat 0 p x s ... k s u 1 e x s ... n n g 2 e b s ... n n m [3 rows x 23 columns] <class 'pandas.core.frame.DataFrame'> RangeIndex: 8124 entries, 0 to 8123 Data columns (total 23 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 class 8124 non-null object 1 cap-shape 8124 non-null object 2 cap-surface 8124 non-null object 3 cap-color 8124 non-null object 4 bruises 8124 non-null object 5 odor 8124 non-null object 6 gill-attachment 8124 non-null object 7 gill-spacing 8124 non-null object 8 gill-size 8124 non-null object 9 gill-color 8124 non-null object 10 stalk-shape 8124 non-null object 11 stalk-root 8124 non-null object 12 stalk-surface-above-ring 8124 non-null object 13 stalk-surface-below-ring 8124 non-null object 14 stalk-color-above-ring 8124 non-null object 15 stalk-color-below-ring 8124 non-null object 16 veil-type 8124 non-null object 17 veil-color 8124 non-null object 18 ring-number 8124 non-null object 19 ring-type 8124 non-null object 20 spore-print-color 8124 non-null object 21 population 8124 non-null object 22 habitat 8124 non-null object dtypes: object(23) memory usage: 1.4+ MB None class cap-shape cap-surface ... spore-print-color population habitat 0 1 5 2 ... 2 3 5 1 0 5 2 ... 3 2 1 2 0 0 2 ... 3 2 3 [3 rows x 23 columns] cap-shape cap-surface cap-color ... spore-print-color population habitat 0 5 2 4 ... 2 3 5 1 5 2 9 ... 3 2 1 2 0 2 8 ... 3 2 3 [3 rows x 22 columns] 0 1 1 0 2 0 Name: class, dtype: int32 (6499, 22) (1625, 22) (6499,) (1625,)
'Python 데이터 분석' 카테고리의 다른 글
Python 데이터분석 기초 69 - K-NN (K-Nearest Neighber) (0) 2022.11.25 NaiveBayes 분류모델 - GaussanNB 예제 (0) 2022.11.24 Python 데이터분석 기초 69 - NaiveBayes 분류모델 (0) 2022.11.24 Python 데이터분석 기초 68 - SVM으로 이미지 분류 (0) 2022.11.24 Python 데이터분석 기초 67 - 특성공학 기법 중 차원축소(PCA - 주성분 분석)-iris dataset (0) 2022.11.24